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Abstract A discontinuous Galerkin finite-element method (DG-FEM) solution to a set of high-order
Boussinesq-type equations for modelling highly nonlinear and dispersive water waves in one horizontal
dimension is presented. The continuous equations are discretized using nodal polynomial basis functions of
arbitrary order in space on each element of an unstructured computational domain. A fourth-order explicit
Runge-Kutta scheme is used to advance the solution in time. Methods for introducing artificial damping
to control mild nonlinear instabilities are also discussed. The accuracy and convergence of the model with
both h (grid size) and p (order) refinement are confirmed for the linearized equations, and calculations are
provided for two nonlinear test cases in one horizontal dimension: harmonic generation over a submerged
bar, and reflection of a steep solitary wave from a vertical wall. Test cases for two horizontal dimensions
will be considered in future work.

Keywords Discontinuous Galerkin finite-element method · Gravity waves · High-order Boussinesq-type
equations · Unstructured grids

1 Introduction

Boussinesq-type equations are used routinely by coastal engineers for the numerical simulation of non-
linear wave motion in near-shore regions. The main idea behind these equations is to reduce the three-
dimensional potential-flow problem to a two-dimensional problem by assuming a polynomial variation in
the vertical direction. Such equations represent an important engineering tool for predicting wave–wave,
wave–bottom, and coastal wave–structure interaction. These phenomena are critical to the design of, e.g.,
offshore windmill foundations, harbours, and exposed loading facilities.
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A large number of Boussinesq-type models are in use today; a comprehensive review of the his-
tory of Boussinesq theory can be found in [1]. Basically, there are two classes of Boussinesq models:
two-variable formulations in terms of an elevation and a horizontal velocity or flux variable, and three-
variable formulations that also retain the vertical component of velocity as an unknown. Two-variable
formulations, for example [2–4], are generally more efficient, but have a limited radius of convergence
and are thus restricted to a distinct value of kd (k the wave number and d the water depth) regardless
of the order retained in the expansion in terms of dispersion. Three-variable formulations, on the other
hand, can have an infinite radius of convergence, as shown by Madsen and Agnon [5]. We focus here on
the most accurate of these yet developed, that of Madsen et al. [6], and refer to two different versions of
the same Boussinesq method. These versions can be characterized by the number of terms (n) retained in
the Padé (n, n) enhanced operators in the derivation of the equation system, which are included to improve
the embedded linear and nonlinear properties.

The Padé (4,4) version of this method is capable of accurately modelling nonlinear waves up to the point
of breaking and out to relative water depths of approximately kd = 25, while accurate kinematics (vertical
variation of the flow) are obtained out to approximately kd = 10. The Padé (2,2) version obtained by using
the optimized coefficients determined by Jamois et al. [7] is accurate in dispersion up to approximately
kd = 10 and with accurate kinematics up to approximately kd = 4. These equations are thus appropriate
for modelling a broad range of water wave phenomena in near-coastal environments. This additional accu-
racy and range of dispersion is, however, obtained at the cost of additional variables (degrees of freedom)
and more complicated systems of linear equations relative to the two-equation models, and this provides
new challenges for obtaining efficient numerical solutions.

Many of these challenges have been successfully overcome using a finite-difference solution on a struc-
tured (uniformly spaced, rectangular) grid as reported by Fuhrman and Bingham [8] and by Fuhrman
et al. [9]. This finite-difference scheme is, however, at a fixed order of accuracy, and lacks geometric
flexibility both in terms of local grid refinement and the inclusion of other than piecewise rectangular
structures. The goal of the present work is to provide a solution with both geometric and order flexibility
by means of an unstructured discontinuous Galerkin finite-element method (DG-FEM). We note that the
unstructured grid is particularly attractive by being adaptable to the physical scales of the problem, and
this can potentially lead to a significant reduction in the computational effort.

The unstructured finite-element method (FEM) has been applied to various two-variable Boussinesq-
type problems. The classical Boussinesq equations of Peregrine [2] were solved by Antunes Do Carmo et
al. [10], Ambrosi and Quartapelle [11], and again by Sherwin and Eskilsson [12]. A set of weakly dispersive
Boussinesq-type equations was solved and studied by Langtangen and Pedersen [13]. Li et al. [14] solved
the improved Boussinesq equations by Beji and Nadaoka [15]. The extended Boussinesq equations of
Madsen and Sørensen [3] were solved using a FEM model by Sørensen et al. [16], while the equations of
Nwogu [4] were solved by Walkley and Berzins [17, 18], and Eskilsson and Sherwin [19, 20]. Recently,
Eskilsson and Sherwin [21, 22] solved the same set of extended equations using a DG-FEM method.

At first glance, the use of a discontinuous method to solve continuous problems where we expect smooth
solutions (i.e. up to wave breaking) may seem strange, especially since a continuous form of the method is
available. The reasons for this choice are: ease of implementation; and improved computational efficiency
due to the local nature of the DG-FEM, which is especially important for implementing higher-order
operators (in this case up to fifth-order derivatives).

The remainder of this paper is organized as follows. Section 2 reviews the governing equations of the
high-order Boussinesq-type formulation to be solved. Section 3 presents a method-of-lines stability analy-
sis of the continuous linearized equations in both one and two horizontal dimensions. Section 4 describes
the numerical methods chosen for discretizing the governing equations in one horizontal dimension.
A discrete stability analysis is given along with descriptions of the techniques used for wave generation
and absorption, as well as mild filtering techniques that is necessary to stabilize the nonlinear calculations.
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Section 5 provides some numerical results obtained using the proposed methodology. Section 6 provides a
summary along with concluding remarks.

2 The high-order Boussinesq-type equations

If viscous effects are small enough to be neglected, then potential-flow theory provides us with a reasonably
good mathematical description of the flow of water waves. The main idea of Boussinesq-type equations is
to simplify these standard equations of potential flow by assuming a polynomial variation in the vertical
direction in terms of a velocity potential function. The high-order Boussinesq-type equations are derived
from an exact infinite-series solution to the Laplace problem in the interior, which can be related to an
arbitrary expansion level below the free surface inside the fluid volume. The exact solution in the interior
can then be combined with the exact representation of the free surface and bottom boundary conditions.
By carefully truncating and enhancing the resulting finite operators using Padé approximants, it is possible
to arrive at the final high-order Boussinesq-type velocity formulation given in the original work by Madsen
et al. [6]. Derivation details for the system of equations can be found in the original paper.

The fluid motion is described by the horizontal velocity vector û, the vertical velocity ŵ, evaluated at
the expansion level z = ẑ, and the surface elevation η. The variables defined at the expansion level can
be related to the surface variables defined at z = η(x, t) denoted with a tilde. The still-water depth d(x) is
measured from the still-water level (SWL), which is positioned at the still water surface where z = 0, as
illustrated in Fig. 1. The gravitational acceleration g is set to 9·81 m2/s.

The set of high-order Boussinesq-type equations are given in terms of variables defined directly on the
free surface and given by the exact kinematic and dynamic free surface boundary conditions as

∂tη = w̃ − ∇η · (Ũ − w̃∇η), (1)

∂tŨ = −∇
(

gη + Ũ · Ũ
2

− w̃2

2
(1 + ∇η · ∇η)

)
, (2)

where Ũ ≡ ũ + w̃∇η = (Ũ, Ṽ)T has been introduced, ∇ = (∂x, ∂y)
T is the two-dimensional gradient

operator in a Cartesian coordinate system, and ∂x is the partial derivative with respect to the x-coordinate.
From appropriate initial conditions at time t0, the free-surface elevation η(x, t) can be evolved for t > t0
using (1) and the tangential free-surface velocity Ũ(x, t) can be updated using (2). To evolve these variables
the vertical free-surface velocity w̃(x, t) has to be determined. This is done by first solving an algebraic
system that combines the solution of the (truncated) Laplace problem in the interior with a kinematic
bottom boundary condition, and then relating this solution to the vertical free-surface velocity. Thus, in
one horizontal dimension (1D), we need to solve a time-dependent system of the form
[

Ũ
0

]
=

[
A2 − ∂xη · B2 B2 + ∂xη · A2
A3 + ∂xd · S1 B3 − ∂xd · S2

] [
û∗
ŵ∗

]
, (3)

Fig. 1 Definition sketch
in one horizontal
dimension
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and then the vertical free-surface velocities can be obtained from

w̃ = −B2û∗ + A2ŵ∗. (4)

Note that the auxiliary variables û∗, ŵ∗ (also see below) have been introduced as part of the Padé enhance-
ment procedure in the derivations. These auxiliary variables are related to the physical velocities through
a linear operator.

In two horizontal dimensions (2D) we need to solve
⎡
⎣

Ũ
Ṽ
0

⎤
⎦ =

⎡
⎣

A11 − ∂xη · B11 A2 − ∂xη · B12 B11 + ∂xη · A1
A2 − ∂yη · B11 A22 − ∂yη · B12 B12 + ∂yη · A1

A01 + S01 A02 + S02 B0 + S03

⎤
⎦

⎡
⎣

û∗
v̂∗
ŵ∗

⎤
⎦ . (5)

As in 1D, the vertical free-surface velocities can be computed from the solution of this algebraic system as

w̃ = −B11û∗ − B12v̂∗ + A1ŵ∗. (6)

The terms allowing for a mildly varying bottom are given as

S01 = ∂xd · C11 + ∂yd · C2, (7)

S02 = ∂xd · C2 + ∂yd · C22, (8)

S03 = −∂xd · C13 − ∂yd · C23. (9)

The different continuous operators used to define the complete equation systems (3–9) are given in Sect. 7
The structure of the global operators on the right-hand sides in (3) or (5) is unsymmetric.

A solution procedure similar to that suggested by Madsen et al. [6] is used for solving the set of govern-
ing equations. Madsen et al. also concluded that a constant expansion level of approximately ẑ = −0·5d
leads to optimal accuracy with respect to the vertical velocity distribution; this expansion level is thus
chosen throughout this paper. This choice simplifies the linear systems in (3) and (5) and results in a
block-symmetric system, that reduces the number of different operators.

At the physical boundaries, we generally specify impermeable wall conditions. If needed, we gener-
ate waves internally using relaxation zones and approximate radiation boundaries using sponge layers as
discussed in Sect. 4.9.

3 Stability considerations

Fuhrman et al. [23] considered the numerical stability of their finite-difference model and found it to be
linearly stable and, under sufficient artificial damping, nonlinearly stable.

In this section, we consider the linear stability of the analytic problem in a more general way by a Fourier
analysis. It will be shown that the eigenspectra of the continuous operators are purely imaginary, and upper
bounds for the maximum eigenvalues will be established. In Sect. 4.6, it will be shown that these results
are also valid for the discrete problem for our choice of discretization.

3.1 Fourier analysis

The starting point for the Fourier analysis is the linearized equation system in a periodic domain containing
a flat bottom, given in the semi-discrete form as

∂tq = L(q) = Jq, (10)

where q = (η, u)T is a vector of primitive variables. In 1D, this gives

∂t

[
η

u

]
=

[
0 J12

−g∂x 0

] [
η

u

]
. (11)
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Solving Eq. 3 and inserting the solution into (4), we obtain the continuous operator

J12 = A2A3 + B2B3

A3B2 − A2B3
. (12)

We perform a Fourier linear stability analysis of the Padè (2,2) version by Madsen et al. [6] assuming a
harmonic variation in space,

η(x, t) = η̂(t)eikx, u(x, t) = û(t)eikx, (13)

in (11). In Fourier space, the operator is given as

J12 = −i
24kd

(
10 + (kd)2)(60 + (kd)2)

14400 + 6480(kd)2 + 264(kd)4 + (kd)6
, (14)

and the eigenvalues of the Jacobian J in Eq. (11) are complex and imaginary

λ(J) = ±i

√√√√ (g/d)(kd)224
(

600 + 70(kd)2 + (kd)4
)

14400 + 6480(kd)2 + 264(kd)4 + (kd)6
. (15)

In the shallow-water limit, kd < 0·31, the eigenvalues reduce to those of the linearized shallow water
equations, λ(JSWE) = ±k

√
gd.

We conclude that (i) the eigenvalues of the linearized Boussinesq formulation reduce to the shallow-
water eigenvalues for relatively low depths, (ii) the exact eigenspectra of the linearized formulation are
imaginary, and (iii) the maximum absolute eigenvalue of the continuous problem is bounded for a constant
still-water depth, d, since from (15) we find that

|λ1D
max| = lim

kd→∞
|λ(J)| = 2

√
6

√
g
d

. (16)

In other words, for a given still-water depth, the maximum absolute eigenvalue of the Jacobian increases
with kd. Increasing kd on a fixed depth corresponds to allowing the wave length L → 0, i.e. the smallest
(and slowest) wave harmonic determines the size of the absolute maximum eigenvalue on a fixed depth.

Similar results are obtained for the Padé (2,2) version, and for both versions of the formulation in 2D,
as shown in Table 1. The upper bound for the eigenvalues remains the same for the Padé (2,2) formu-
lation in both 1D and 2D. For the Padé (4,4) formulation, the upper bound is lower than that found for
the one-dimensional case. Thus, the above analysis suggests that the less accurate Padé (2,2) formulation
retaining third-order rather than fifth-order differential operators, as in the Padé (4,4) formulation, has
better stability properties if the discrete properties of the Jacobian mimic this behaviour.

4 Numerical methods

In this section we outline the numerical methods for solving the governing Eqs. 3–9. A method-of-lines
approach has been used, where the spatial and temporal discretizations are considered separately. The
DG-FEM is used for the spatial discretization of the governing equations, and the resulting semi-discrete
equation system is solved using an explicit Runge–Kutta method to evolve the equations in time from
appropriate initial conditions.

Table 1 Analytical

bounds for |λmax|
√

d
g for

the linearized formulations
in different horizontal
dimensions for ẑ = −0·5d

1D 2D

Padé (2,2) 2
√

6 2
√

6
Padé (4,4) 2

√
15 3

√
5
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4.1 The discontinuous Galerkin finite-element method

The DG-FEM is used for the spatial discretization. Originally, the method was developed for problems
governed by conservation laws, e.g., see review on DG-FEM in [24]. In that paper, the DG-FEM is used to
discretize and solve the high-order Boussinesq-type formulation, which is not given in conservation form.

The DG-FEM is a high-order spectral finite-element method. On each element, it is based on the
Galerkin form of the more general Mean Weighted Residual method, which determines the way we satisfy
(or minimize the residual of) our governing PDE in seeking an approximate solution. Before constructing
any DG-FEM scheme, the domain is subdivided into elements. The main idea of the DG-FEM is to allow
the solution to be discontinuous over the local-element boundaries and only couple adjacent elements
using suitable numerical fluxes. The choice of numerical fluxes can be borrowed from the finite-volume
framework, which is theoretically well-established. The DG-FEM combined with nodes defined directly at
the boundaries offers the opportunity to determine the numerical fluxes directly. Further, the method can
by construction easily handle complex geometries, irregular meshes, and polynomials of different degrees
in different elements. Thus, the method supports hp-adaptive strategies for obtaining convergent solutions.
A major advantage of the DG-FEM is that it conceptually generalizes to higher dimensions; therefore,
once familiar with the one-dimensional implementation, it is straightforward to apply the concepts to
higher dimensions.

4.2 Subdivision of the computational domain

Before applying the discontinuous Galerkin procedure to discretize these equations in space, we partition
the computational domain into K non-overlapping elements, such that � = ⋃K

k=1 �k. The characteristic
size of the k’th element is denoted by hk; in one horizontal dimension, this is the size of the element.

On the k’th element, the solution is approximated locally by a finite sum as

uk(x) =
N∑

n=0

ûk
nφn(x) =

N∑
n=0

uk
nln(x), (17)

where we have N + 1 degrees of freedom inside each element in terms of the unknown modal coefficients
ûk

n or nodal coefficients uk
n for n = 0, . . . , N. ln(x) are the Lagrange polynomials defined on the set of nodes

used in combination with the chosen orthogonal basis. The basis functions φn, n = 0, . . . , N, are chosen
such that uk ∈ V

N
k , where the approximation space V

N
k is defined as

V
N
k = {v : vk ∈ P

N(�k), ∀�k ∈ �}, (18)

i.e., polynomials of at most order N in each element. The classical Legendre polynomials Pn(x) are used
as our orthogonal basis in 1D, normalized such that

φn(x) = Pn(x)√
2n + 1

. (19)

As shown by Hesthaven and Warburton [25], we can choose to represent our polynomial basis functions in
a Lagrangian (i.e., a nodal) basis; we use the Legendre–Gauss–Lobatto nodes in one dimension. By unique-
ness of the polynomial interpolations, the following (constant) transformation matrix can be defined for
transforming the variables between the modal and nodal spaces

Vij = φj(xi), i, j = 0, . . . , N. (20)

Here xi is the i’th nodal point inside the k’th element. This leaves us with the following relationship between
the modal and nodal coefficients and basis functions

uk = Vûk, φi(x) = VTli(x). (21)
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These relationships allow us to determine both the mass matrix and the stiffness matrix exactly for a stan-
dard element without using high-order Gaussian quadrature rules for the element integrals. By a unique
linear map the physical coordinates x can be transformed to the coordinates of the standard element; thus
only one set of operators needs to be stored.

4.3 Spatial discretization

Because the high-order Boussinesq formulation constitutes a complex system of equations, we are faced
with a number of challenges. In particular, the time-dependent equations (1–2) are nonlinear and not given
in a conservative form, and the involved algebraic system (3) or (5) contains nonlinear coefficient terms, is
time-dependent, and contains high-order differential operators.

To apply the DG-FEM, we first rewrite (1–2) slightly by introducing two auxiliary functions Q(x) and
F(x), as

∂tη = Q(x), (22)

Q(x) = w̃ − ∇η · (Ũ − w̃∇η), (23)

where Q(x) is a source function, and

∂tŨ = −∇F(x), (24)

F(x) = gη + Ũ · Ũ
2

− w̃2

2
(1 + ∇η · ∇η). (25)

Following the DG-FEM procedure, for each element in the domain we multiply (22) and (24) with a smooth
weight function v(x) = φ(x). Two integration by parts are carried out for the right-hand side term in (24).
In the intermediate step of these partial integrations, the analytic flux function n ·F(x) is interchanged with
a continuous numerical flux function n · F∗(xk,−, xk,+) to be chosen, which allow us to connect adjacent
elements. By this approach, the starting point for the strong DG-FEM formulation of (22) and (24) for the
k’th element, k = 1, . . . , K, becomes
∫

�k

φ∂tηdxk =
∫

�k

φQ(x)dxk, (26)
∫

�k

φ∂tŨdxk = −
∫

�k

φ∇F(x)dxk +
∮

∂�k

φn · (F(x) − F∗(x))dxk, (27)

where n = (nx, ny)
T is the outward pointing normal vector on the boundary of the k’th element.

Before arriving at the final numerical scheme, we replace the continuous variables with finite polyno-
mial approximations of the form given in (17), and choose suitable consistent numerical fluxes. We choose
the simplest numerical fluxes available, namely central fluxes or Lax–Friedrichs fluxes given by the trace
operators

F∗
CF(u−, u+) = 0·5(F(u−) + F(u+)), (28)

F∗
LF(u−, u+) = 0·5(F(u−) + F(u+) + s(u− − u+)), (29)

s = max
x∈�

{|∂uF(u(x))|},

where s is the so-called maximum (characteristic) wave speed.
The central fluxes are used for computing spatial derivatives and the (global) Lax–Friedrichs fluxes are

used for the time-dependent momentum Eq. 27 to introduce a small amount of artificial viscosity.
In 1D, the final scheme for the time-dependent equations can be written in a compact form (discrete

operator notation borrowed from Sherwin [26]) using the following discrete elemental operators defined
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and computed for a standard element as

Mij =
∫ 1

−1
φi(ξ)φj(ξ)dξ , M = (VVT)−1, (30)

Sij =
∫ 1

−1
φi(ξ)φ′

j(ξ)dξ , S = MD, (31)

Eij = φi(−1)φj(−1), Fij = φi(−1)φj(1), (32)

Gij = φi(1)φj(−1), Hij = φi(1)φj(1), (33)

where M is the Mass matrix, S is the Stiffness matrix, and D is a differentiation matrix, which can be
determined from the mass and the stiffness matrices for a given set of nodes.

Using the given discrete standard operators with a nodal representation, we can write the numerical
scheme in 1D for the k’th element in compact notation as

hk

2
M d

dt
ηk = hk

2
MQk, (34)

Qk = w̃k − f k(Ũk − w̃kf k), (35)
hk

2
Mf k = Sηk + 0·5(Gηk+1 − Hηk) − 0·5(Fηk−1 − Eηk), (36)

and using Lax–Friedrichs numerical fluxes in

hk

2
M d

dt
Ũk = SFk + 0·5(GFk+1 − HFk) − 0·5(FFk−1 − EFk)

−s(0·5(GŨk − HŨk−1) − 0·5(FŨk − EŨk−1)), (37)

Fk = gηk +
(

Ũk
)2

2
−

(
w̃k

)2

2
(1 + (f k)2). (38)

To arrive at this numerical scheme, it should be clear that in (36) we obtained a DG-FEM approximation
to f = ∂xη by using a strong form DG-FEM and central fluxes. Also, the nonlinear terms in the functions
given in (23) and (25) are determined using direct products as shown in (35) and (38) at the grid nodes in a
collocation manner instead of using aliasing-free orthogonal projections. Although, this approach is used
for efficiency, while being convenient and consistent, it may lead to aliasing errors in the computations
requiring the use of de-aliasing.

To implement a numerical scheme for the algebraic system (3) or (5) require a global assembly pro-
cedure for assembling the local discrete operators into global operators. For the finite-domain case, this
procedure involves the construction of the first-order differential operators having suitable boundary con-
ditions imposed. However, for convenience, we present the assembly procedure for a periodic domain,
since the modifications for the finite-domain case are straightforward.

The discrete global operators are constructed using a Local Discontinuous Galerkin (LDG) method.
Central fluxes are used to connect the elements as in Bassi and Rebay [27]. Each of the high-order differ-
ential operators in the system are decomposed into a set of first order differential operators, e.g., the third
derivative operator in x as

z = ∂xxxu → z = ∂xq, q = ∂xr, r = ∂xu. (39)

The high-order differential operators are determined by matrix–matrix products of the discrete global
first-order differential operators with suitable boundary conditions imposed.

The global assembly of the discrete first-order differential operators defined on a periodic domain needs
to be determined from the local representation on each element. Consider the PDE

∂xu = f , x ∈ [0, L], (40)
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which by the strong form of the DG-FEM procedure leads to the local scheme
∫

�k
φ∂xu dxk +

∮

∂�k
φn · (u∗ − u) dxk =

∫

�k

φf dxk. (41)

The computational domain is subdivided in the usual way into K elements. Then for each element, we can
write the numerical nodal scheme as

Suk + 0·5(Guk+1 − Huk) − 0·5(Fuk−1 − Euk) = hk

2
Mf k. (42)

Now, if we only consider two elements (set K = 2) for simplicity, and use central fluxes to connect our
elements, we can write the globally assembled numerical scheme as
[S + 0·5(E − H) 0·5(G − F)

0·5(G − F) S + 0·5(E − H)

] [
u1

u2

]
=

[
h1
2 M 0

0 h2
2 M

] [
f 1

f 2

]
, (43)

or in a more compact form as

DG
x u = f , (44)

where both u and f are DoF × 1 sized vectors, DoF = K · (N + 1), and the global differentiation operator
with respect to x with boundary terms included is defined as

DG
x =

[
h1
2 M 0

0 h2
2 M

]−1 [S + 0·5(E − H) 0·5(G − F)

0·5(G − F) S + 0·5(E − H)

]
. (45)

The global third-order differential operator given in (39) can easily be constructed from this global
operator as

∂xxx → DG
x · DG

x · DG
x . (46)

By this approach, the high-order differential operators can be built. For example, the 1D operator A2 in
Eq. 3, can be discretized as

AG
2 = I − α2 · (DG

x )2 + α4 · (DG
x )4, (47)

where I is the unitary matrix of size DoF × DoF and αi, i = 2, 4 are diagonal matrices. When each of
the discrete block-differential operators are constructed in this way, we can assemble the discrete global
operator in (3).

The assembly of the nonlinear operators has been done in a collocation manner. For example,

∂xη · B2 → ηx · BG
2 , (48)

where ηx is a diagonal matrix holding the discrete nodal values of ∂xη. Although, this approach may lead
to aliasing errors, it allows for a fast and efficient way of reconstructing the operators, which is consid-
ered to be necessary to keep the computational costs low in the fully nonlinear simulations, and for the
implementation of the method to be relatively simple and practical.

Due to the locality of the DG-FEM, the global assembly results in a relatively sparse global matrix.
This matrix can be reordered in a preprocessing step such that the bandwidth of the matrix in the 1D
finite-domain case is given as 2 × (N + 1) × (2qmax + 1), where qmax is the order of the largest derivative
in the formulation. Thus, the bandwidth is dependent on both the local polynomial order and the highest
derivative in the block operators. The global matrix system is usually sparse and hence it can be solved
efficiently by an appropriate sparse solution method, e.g., using the sparse matrix solver UMFPACK; see
[28]. Since this global matrix system has to be both built (for the fully nonlinear problem) and solved
at every time step, this becomes the computational bottleneck in the numerical scheme. For the present
computations, we have used a direct sparse solution technique.
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4.4 Boundary conditions

In the current models, we have imposed impermeable wall boundary conditions using a symmetry technique
(or mirror principle). Whenever needed, radiation boundaries are set up using relaxation zones.

The impermeable wall boundary conditions are imposed weakly at the outer boundaries of the com-
putational domain through the numerical flux function, which is denoted by q∗. Hence, by the symmetry
technique, Dirichlet boundary-type conditions are imposed as

q∗ = −q−, (49)

such that the averages of the two distinct boundary values at each boundary face correspond to the values
we seek to impose. Neumann boundary-type conditions are imposed as

q∗ = q−, (50)

such that the averages are left unmodified.
By this technique, the boundary conditions are imposed approximately to the accuracy of the scheme.

4.5 Temporal discretization

A fourth-order 2N-low storage explicit Runge–Kutta scheme with five stages (labelled LSERK45 here)
by Carpenter and Kennedy [29] is used for solving the semi-discrete governing equations in time. The
absolute stability region encloses a large part λ	t ≤ 3·345 of the imaginary (inviscid stability) axis in the
complex plane and is easily implemented.

For hyperbolic-type problems solved using explicit time-integration schemes, where λ	t should reside
inside the absolute stability region of the chosen time integration scheme for the numerical scheme to be
absolutely stable, the maximum time step 	tmax is restricted by

	tmax ≤ |sA|
|λmax| , (51)

where sA is the size of the absolute stability region measured on the imaginary axis at the point where the
absolute stability region crosses the imaginary axis in the complex plane.

4.6 Linear stability

A numerical study of linear stability in 1D was carried out to investigate the properties of the DG-FEM
scheme and determine if the analytical bounds given in Table 1 holds for the discrete cases. The study was
performed using structured domains at various constant depths, where both the number of elements and
the fixed local polynomial orders were varied. From the resulting discrete eigenspectra, we numerically
determined the magnitude of the largest eigenvalue for the given discretization and depth.

It was found that the discrete eigenspectra of the numerical schemes based on the linearized formula-
tion in 1D result in an upper bound closely matching the analytical results presented in Table 1. This is
illustrated in Fig. 2 by two tests; the first test uses few elements and a high local polynomial order, and the
second test uses many elements and low local polynomial order. Remarkably, linear stability in 1D was
found to be independent of the size of the elements, the number of elements, and also the local polynomial
order used within the elements (as long as the chosen order lead to well-conditioned local operators, which
is the case for all moderate polynomial orders used in applications, usually N < 10).

Therefore, the time step size in the linearized model in 1D can, in fact, be chosen based on accuracy
considerations alone as long as the analytical criterion is satisfied. However, we conclude from Fig. 2 that,



J Eng Math (2006) 56:351–370 361

2

3

4

5

6

7

8

|λ
m

ax
|/(

g/
d)

0.
5

|λ
m

ax
|/(

g/
d)

0.
5

Absolute maximum eigenvalues (N,K)=(2,100)

100 102 104
1

2

3

4

5

6

7

8

d/Δxmin

100 102 104

d/Δxmin

Absolute maximum eigenvalues (N,K)=(30,10)a) b)

High local polynomial order and  
few elements.

Low local polynomial order and 
many elements.

Analytical
Discrete

Analytical
Discrete

Fig. 2 Computed normalized absolute maximum eigenvalues for the linearized Padé (4,4) formulation for constant depths
in 1D using a structured domain

for shallow depths, the upper bound for linear stability is too restrictive if the smallest scale waves cannot
be resolved on the grid.

Finally, we note that the time step is usually chosen based on accuracy considerations alone, and therefore
the above results are mainly important for testing an application.

4.7 General stability

For the more general cases, a CFL-like criterion is used. The general cases includes both varying depth and
fully nonlinear problems, whereupon the linear stability criteria (51) or the analytical bounds in Table 1 do
not hold. As is usually the case with numerical methods, the upper limit for the time step is restricted by
the numerical growth of the eigenvalues of the discrete operators. Instead, we use the following CFL-like
condition

	t ≤ CFL
	xmin

cmax
, (52)

where the maximum wave propagation speed is estimated using the general linear dispersion relation,
cmax ≈ √

g/k · Tanh(kd). Here 	xmin is set to be the smallest distance between any two points in an
element inside the domain. The magnitude of the CFL constant is O(1).

4.8 De-aliasing techniques

For nonlinear problems lacking (any) numerical diffusivity, we may need to maintain numerical stability by
applying a general filtering or de-aliasing technique. In the presented models, we have used the DG-FEM in
a collocation manner which may give rise to aliasing errors, since we have chosen to evaluate the nonlinear
terms by direct products for the implementation to be practical and for computational efficiency. To reduce
such aliasing errors we have used the filtering techniques mentioned here.

For mildly nonlinear cases in 1D, it is sufficient to use a mild nodal filter constructed in a similar way as
the one presented by Fischer and Mullen [30]. Instead of constructing the filter on the Gauss–Legendre
(GL) nodes, we instead base the filter on the Lobatto–Gauss–Legendre (LGL) nodes. Hence, following
their procedure, the filter is constructed as follows. Let IM

N be an interpolation operator for a polynomial
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of degree N defined on N + 1 GLL nodes onto the M + 1 GLL nodes. Define
∏

N := IN+1
N IN

N+1 to be a
projection from P1

N+1 to P1
N on [−1, 1]. The filter is constructed as

Fα := α
∏

N
+ (1 − α)IN+1

N+1 . (53)

For mildly nonlinear problems in 1D, we have found that this filter works well with approximately α =
0·1 − 0·2.

For more extreme nonlinear wave problems, the model has been successfully stabilized with a Savitzky–
Golay-type (SG) polynomial averaging filter; see [31], which has also been used by Fuhrman and coworkers
(e.g. [7]). The SG filter was then applied locally by using an iso-parametric approximation procedure after
having averaged the interface values to an equi-distant/structured grid where the polynomial filtering could
be carried out before returning (by interpolation back) to the original grid. It is noted that this approach
is semi-local in the sense that the averaging is done across element interfaces locally. This approach was
found to be practical in order to avoid unnecessary large jump discontinuities and reduce any aliasing
errors in the solution. The computational cost of this approach is negligible in comparison with the cost
of solving the algebraic system every time step when it is set up in the pre-processing stage before the
computations.

However, in 2D models where complex geometries may be used, the SG filtering procedure is imprac-
tical, and hence alternative de-aliasing means are to be found.

4.9 Relaxation zones

We need to be able to both absorb and generate waves that are generally uni-directional inside the com-
putational domain. A convenient method by Larsen and Dancy [32] for both generating and absorbing
waves while preserving the outer domain boundary conditions is to modify the discrete function values in
a smooth way in space using a relaxation function 
(x) such that the relaxed solution u∗(x) is given by

u∗(xi) = 
(xi)u(xi) + (1 − 
(xi))ue(xi), (54)

where 
(x) ∈ [0, 1] has to be a single-valued function for x ∈ Rd, where d is the number of horizontal
dimensions, and ue is an analytical solution. The first term acts as a “sponge layer” which will effectively
damp any wave motion in the zone. The last terms containing ue act as “source terms” within the relaxation
zone; including them in the relaxation, allows us to generate waves.

This relaxation method is somehow ad hoc and the following parameters should be balanced before
arriving at satisfactory results: (a) shape of relaxation functions, (b) position of relaxation zones, and (c)
length of the relaxation zones.

The following relaxation functions have been used in the simulations for respectively sponge layers
(positioned next to wall boundaries) and wave generation


(x; p) = 1 − xp, (55)


(x) = −2x3 + 3x2. (56)

For absorption in sponge layers a good choice is that 
(x; 5·0) are positioned appropriately where waves
are to be both/either generated and/or absorbed and the rule of thumb is that the relaxation should be
invoked in a region covering approx. 1–2 wave lengths of the primary wave in the region. A disadvantage
of the relaxation method is that it takes up a part of the computational domain, but the compensation is a
straightforward procedure, that is both easy and flexible to use. For this reason, it is our method of choice.

5 Computational examples

We conclude with numerical examples confirming that the proposed methodology provide a basis for
solving the high-order Boussinesq-type equations accurately.
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5.1 Spatial accuracy

Consistency tests of the numerical model based on the Padé (4,4) formulation have been carried out to
numerically determine convergence rates for h- and p-type refinement strategies. The linearized system of
equations in 1D is used as the basis for modelling a linear standing wave in a finite domain x ∈ [−1, 1].
The tests are carried out in deep waters with a relative depth corresponding to kd = 10, which should be
solved accurately by the high-order system. At this depth, all spatial derivatives are important for obtaining
accurate solutions, and exceeds the practical deep water limit (kd = 2π) for most other Boussinesq-type
formulations.

It is shown numerically that in the approximate limits, reached by either h- or p-type refinement or
a combination thereof, where sufficient spatial resolution is used to capture the solution, the numerical
model has the expected spatial order of accuracy, which is obtained by using central numerical fluxes.

Consistency tests have been carried out for a linear standing wave given by the initial surface elevation
η(x, t) = H cos(ωt) cos(kx) and zero kinetic energy, where H is the wave height, and the angular frequency
ω has been determined using the linear Boussinesq dispersion relation derived by Madsen et al. [6]. The
numerical model was run for 100 time steps with a time step small enough for the spatial errors to dominate
in each test. The normalized max-norm errors are determined using the analytical solution for a linearly
standing wave.

As demonstrated in Fig. 3, convergence is obtained for both h-type and p-type strategies until the levels
of truncation errors from the solution of the algebraic system dominates. Clearly, the p-type convergence
strategy is superior giving rise to exponentially fast convergence as opposed to the alternative h-type con-
vergence strategy leading to algebraic convergence. The spatial order of accuracy is found from the data
presented in Fig. 3a to be optimal O(hN+1) for even polynomial orders and sub-optimal O(hN) for odd
polynomial orders. It is well-known that this even-odd behaviour can occur for problems discretized using
central fluxes (see [24]).

5.2 Harmonic generation over a submerged bar

Although potential benefits of DG-FEM for solving the Boussinesq-type equations are expected to be more
significant in solving 2D problems, we demonstrate the geometric flexibility and the potential benefits in
using the proposed methodology by simulating harmonic generation over a submerged bar.

An experiment where an input wave is propagating over a submerged bar during which the wave
undergo transformation was originally proposed by Beji and Battjes [33]. Later, an equivalent experiment,
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Fig. 4 Submerged bar test setup in original experiment

scaled by a factor of two, was carried out by Luth et al. [34]. The bathymetry was defined as shown in Fig. 4
for the original unscaled experiment.

In this experiment, the input wave propagates toward the bar on a constant bottom with no change in
form until it reaches the bar. On the up-slope, the wave will then steepen due to nonlinear shoaling. At
the top of the bar, bound harmonics will be released as free harmonics decomposing the wave into shorter
waves, which results in a rapidly varying wave profile behind the bar. The shorter wave components or
free higher harmonics require a highly accurate dispersion relation to be propagated correctly. Therefore,
this experiment has been used as a benchmark test for dispersive wave models. See for example [1], [35]
and [6].

We have considered a setup corresponding to Case A in the original experiment by Beji and Battjes. For
this case, the input wave on a undisturbed depth of d = 0·40 m is given as; Case A: T = 2·02 s and H = 2 cm.
The input wave was generated using second-order Stokes theory. Computed results are compared with
the experimental data obtained by Luth et al. in Fig. 5. Locally on each element, a polynomial order of
N = 8 is used and K = 110 equi-sized elements. At every stage of the explicit Runge–Kutta scheme, the
spatial solutions for η(x, t) and Ũ(x, t) are filtered using a mild nodal filter with α = 0·1. As shown in Fig. 5,
we achieve excellent agreement with the data with minimal differences in surface elevations (due to the
accurate dispersion relation) at all gauge locations.

A numerical simulation done using an unstructured grid adapted to the problem, as depicted in Fig. 6a.
Inside the domain, the grid varies linearly from a element size of h0 = 0·67 m to an element size of
hk = 0·35 m positioned at the top of the bar. From the top of the bar and forward, the element size remains
constant to be slightly increased in the relaxation region where it is takes the value hk = 0·4 m. By use of
a local polynomial order of N = 8 and a total of K = 80 elements, the degrees of freedom are reduced
by 26% compared to the former experiment. This is possible because the spatial resolution is coarsened
in the region to the left of the bar and fine in the region where the spurious (or faster) wave components
are released after the bar. As depicted in Fig. 6 the results are indistinguishable from the ones presented
in Fig. 5. This test serves to illustrate the potential gain that can be obtained by using an adapted grid
compared to a structured grid.

5.3 High-amplitude solitary waves

In a demanding test we model the propagation of high-amplitude solitary waves reflected on a vertical solid
wall. This experiment demands a model capable of capturing both nonlinear and dispersive characteristics.
A highly accurate initial condition for the solitary waves can be computed using the method by Tanaka
[36]. From the initial starting point, which is assumed to be sufficiently far from the walls for the boundary
conditions to be satisfied, the wave will propagate inside the computational domain toward the left wall.
Within a distance of approximately 2d from the wall measured from the wave crest, the wave crest will
start to accelerate leading to a tall and thin jet shooting up in close proximity to the wall. This effect is a
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Fig. 6 Submerged bar test using an unstructured grid adapted to the physical scales

purely nonlinear. As concluded by Cooker et al. [37] on the basis of experimental data and in agreement
with their numerical results, the phase-change during the reflection is spatially dependent and hence these
waves are not solitons, as a (usually minor) loss of energy occurs, during the reflection of the solitary waves.
Therefore, the wave cannot maintain its original shape after the reflection. However, the wave will again
take the form of a solitary wave after the reflection; although with slightly smaller amplitude, and this
adjustment will result in a dispersive trail.
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Similar to the results obtained by Madsen et al. [6], we present results for the attachment, detachment
and max wave run up amplitudes. Numerical simulations using structured grids have been carried out for
solitary waves with varying wave steepness. For solitary waves with dimensionless amplitudes a/d ≤ 0·5,
a mild nodal filter with α = 0·1 − 0·2 have been applied every time step. Here a is the height from the
undisturbed water surface to the crest of the solitary wave. For the more extreme and steep solitary waves,
the SG-polynomial averaging (nodal) filter has been applied every time step with stencil half size α = 6
and filter order p = 8. In all simulations, a local polynomial order of N = 8 has been used. The spatial
resolution needed increases with the magnitude of the solitary wave amplitude. The number of elements
ranged from K = 40−100 for amplitudes a/d = 0·1−0·6 for the waves to be considered well-resolved in
a computational domain x ∈ [0, 45]m. For the high-amplitude solitary waves to be accurately resolved, a
model capable of adapting the grid “on the fly” to allow for changes in the spatial resolution where it is
needed would be more appropriate in terms of computational efficiency. However, this is not possible in
the current application.

As observed by both Cooker et al. [37] and Madsen et al. [6], it is difficult to model the thin jet shooting
up numerically due to the rapid and subsequent collapse of the jet afterwards, which demands sufficient
spatial resolution in this region. However, we introduced a small amount of artificial viscosity in the vicinity
of the wall in order to suppress spurious oscillations, and thus we are able to continue the detachment curve
where previous results have not been obtained in Fig. 7a even for the high-amplitude cases. Further, as can
be seen in Fig. 7b, the numerical data for the non-dimensional wall forces at the left wall are in excellent
agreement up to nearly a/d = 0·6. Around this limit, it it found necessary to introduce the beforehand
mentioned artificial viscosity.

6 Concluding remarks

We have presented a methodology based on the DG-FEM for solving high-order Boussinesq-type equa-
tions, which supports the use of unstructured meshes. This has potential benefits in terms of possible
reductions of the degrees of freedom and local adaptivity in complex geometries.

It has been shown that the methodology can be used to produce accurate results for demanding test
cases describing relevant dispersive and nonlinear wave phenomena.

Reducing the computational effort remains a future task. The computational bottleneck in solving the
system of equations is to both reconstruct and solve the involved algebraic system efficiently. Hence, it is
crucial for large-scale applications that an efficient sparse solver is used to enable the model to be cost-
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efficient. Currently, the methodology is based on simple approximations in a collocation manner possibly
leading to aliasing errors. These aliasing errors can be removed by introducing frequency-dependent arti-
ficial viscosity by, e.g., nodal filtering or Savitzky–Golay polynomial averaging filtering.

The current application is only capable of adapting the grid to the initial geometry of the domain. For
some problems, e.g. high-amplitude solitary waves problems, it is more convenient to be able to adapt the
grid during the simulation based on for example steep gradients in the solution.

We seek to test the methodology for fully nonlinear problems in two horizontal dimensions and a
thorough description along with more results will appear in a future paper.

7 Appendix A: Differential operators

A number of differential operators arise in the derivation procedure for the high-order Boussinesq-type
formulation presented in Sect. 2. The definitions of these continuous differential operators for use with
the velocity formulation in one and two horizontal dimensions are given here fore the Padé (4,4) version.
The Padé (2,2) version is straightforwardly obtained by changing the coefficients to those given in the next
section.

7.1 Coefficients for two different versions

The coefficients correspond to those for the truncated and Padé enhanced linear operators of the exact
infinite-series solution for the velocity field satisfying the Laplace equation in the interior.

The Padé (4,4) formulation retaining up to fifth-order derivatives given in Madsen et al. [6] result in the
following coefficients

α2 ≡ (z − ẑ)2

2
− ẑ2

18
, (57)

α4 ≡ (z − ẑ)4

24
− ẑ2(z − ẑ)2

36
+ ẑ4

504
, (58)

β1 ≡ z − ẑ, (59)

β3 ≡ (z − ẑ)3

6
− ẑ2(z − ẑ)

18
, (60)

β5 ≡ (z − ẑ)5

120
− ẑ2(z − ẑ)3

108
+ ẑ4(z − ẑ)

504
, (61)

γ2 ≡ 4
9

, γ3 ≡ 1
9

, γ4 ≡ 1
63

, γ5 ≡ 1
945

. (62)

The optimized parameters leading to a minimization of the linear shoaling errors over kd ∈ [0, 30] (ẑ =
−0·5d) are given as

c2 = 0·357739, c4 = 0·00663819,

s3 = 0·0753019, s5 = −6·31532 × 10−5. (63)

The Padé (2,2) formulation retaining up to third-order derivatives is given as

α2 ≡ (z − ẑ)2

2
− ẑ2

10
, (64)

α4 ≡ 0, (65)

β1 ≡ z − ẑ, (66)

β3 ≡ (z − ẑ)3

6
− ẑ2(z − ẑ)

10
, (67)
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β5 ≡ 0, (68)

γ2 ≡ 2
5

, γ3 ≡ 1
15

, γ4 ≡ 0, γ5 ≡ 0. (69)

The optimized parameters leading to a minimization of the linear shoaling errors over kd ∈ [0, 6] (ẑ =
−0·5d) presented in Jamois et al. [7] are given as

c2 = −0·0593982, s3 = −0·00113222. (70)

Further, the height of the water-column from the bottom to the chosen expansion level is defined as

λ ≡ d + ẑ. (71)

7.2 Continuous differential operators

The continuous differential operators are derived from a set of power rules for the ∇-operator, and is the
result of truncation of the exact and subsequently enhanced exact infinite series solution to the velocity
field in the interior.

7.2.1 One horizontal dimension

A2 = 1 − α2(∂xx) + α4(∂xxxx), (72)

A3 = λ(∂x) − γ3λ
3(∂xxx) + γ5λ

5(∂xxxxx), (73)

B2 = β1(∂x) − β3(∂xxx) + β5(∂xxxxx), (74)

B3 = 1 − γ2λ
2(∂xx) + γ2λ

4(∂xxxx), (75)

S1 = 1 − c2λ
2(∂xx) + c4λ

4(∂xxxx), (76)

S2 = λ(∂x) − s3λ
3(∂xxx) + s5λ

5(∂xxxxx). (77)

7.2.2 Two horizontal dimensions

A01 = λ∂x − γ3λ
3(∂xxx + ∂xyy) + γ5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (78)

A02 = λ∂y − γ3λ
3(∂xxy + ∂yyy) + γ5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy), (79)

A1 = 1 − α2(∂xx + ∂yy) + α4(∂xxxx + 2∂xxyy + ∂yyyy), (80)

A11 = 1 − α2(∂xx) + α4(∂xxxx + ∂xxyy), (81)

A2 = −α2(∂xy) + α4(∂xxxy + ∂xyyy), (82)

A22 = 1 − α2(∂yy) + α4(∂xxyy + ∂yyyy), (83)

B0 = 1 − γ2λ
2(∂xx + ∂yy) + γ4λ

4(∂xxxx + 2∂xxyy + ∂yyyy), (84)

B11 = β1(∂x) − β3(∂xxx + ∂xyy) + β5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (85)

B12 = β1(∂y) − β3(∂xxy + ∂yyy) + β5(∂xxxxy + 2∂xxyyy + ∂yyyyy), (86)

C11 = 1 − c2λ
2(∂xx) + c4λ

4(∂xxxx + ∂xxyy), (87)

C2 = −c2λ
2(∂xy) + c4λ

4(∂xxxy + ∂xyyy), (88)

C13 = λ(∂x) − s3λ
3(∂xxx + ∂xyy) + s5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy), (89)

C22 = 1 − c2λ
2(∂yy) + c4λ

4(∂xxyy + ∂yyyy), (90)

C23 = λ(∂y) − s3λ
3(∂xxy + ∂yyy) + s5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy). (91)
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